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The generalization of the Boltzmann equation is realized by taking into account the
alteration of the distribution function on scales of the collision time order. The
generalized hydrodynamic equations are derived on the basis of the generalized
Boltzmann equation. The strict theory of turbulence on the Kolmogorov scale is
developed. Examples and issues are given for the shock wave structure and sound
wave propagation calculations.

Notation

s-particle distribution function

velocity of the ¢-particle

phase volume

dimensionless parameter (see (2.4))

scale factor (A = (nr?)™?)

volume of the system

dimensionless vector in the scale of the particle interactions for the -
particle

Fir | dimensionless vector in the A-scale

@lfi/@fb dimensionless derivative (see (2.14), (2.17))

d,f{/dt, ;, dimensionless derivative (see (2.16))
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Signs

In recent years considerable efforts have been done in the derivation of generalized
hydrodynamic equations (GHE) using the generalized Boltzmann equation (GBE)
(Alexeev 1987, 1988, 1990a—d, 1992). It is well known, that the Boltzmann equation
is valid for the hydrodynamic scales and also for scales related to the mean free path
between collisions. The proposed generalization of the classical Boltzmann kinetic
theory takes into account the alteration of the distribution function on scales of the

Downloaded from rsta.royalsocietypublishing.org
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dimensionless force of interaction between particles ¢ and j
Knudsen number

logarithm of the distribution function
magnetic induction or B = 1—2A/(22) in (4.3)
jacobian

elastic collision integral for a-component
non-elastic collision integral for a-component
charge of the particle for a-component

the number of components in the mixture
mass of the a-molecule

The Boltzmann H-function

the typical double vector product

collision invariants

factor in (2.48)

mass density of the a-component

curl of vector B

peculiar velocity of the particles of a-component
average value for molecular characteristic
static pressure

pressure tensor for a-component

dynamical viscosity

unknown function in (3.23)

tensor (see (3.34)) with components D, ,
Laplacian

Sonine coefficient in (3.35)

tensor with components [I;; in (3.44) and (3.45)
boundary value in (3.51)

delta function in (3.53)

dimensionless wave number in (4.4)

,.)/—1

see (4.3), where 4 = y'/y

sound speed in the Euler approximation

dimensionless value
scalar product

double tensor product
average molecular values
vector product

1. Introduction

Phil. Trans. R. Soc. Lond. A (1994)
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The generalized Boltzmann equation 419

collision time order. The fact of great importance is that this additional term is of
Knudsen number order. The GBE leads to a new system of hydrodynamic equations:
GHE, and the classical Euler and Navier—Stokes equations are only a particular case
of this new theory. As a result we can build a strict theory of turbulence on
Kolmogorov’s scale of turbulence. The applications of the car and the GBE are
considered including the calculation of forced sound-wave speed and damping of the
sound for arbitrary relation between the frequencies of forced oscillations and
molecular collisions. Also with the help of the GHE the structure of shock waves for
arbitrary Mach numbers is calculated.

2. The generalized Boltzmann equation
(a) Application of Bogolubov chain of equations in the GBE theory

Let us consider the chain of Bogolubov kinetic equations. In usual nomenclature
we can write the next equation for the s-particle distribution function f;

s s s s _ a0,
Lisole s ppdasndo—Swal Rt 2y
where €2, is phase volume, d€2,,, = dr,,, dp,,,, and N the number of particles in the
system. We are taking into account internal forces F;; acting between particles of the
same chemical structure and the external forces F;. The Bogolubov equation (2.1)
can be written in the dimensionless form. For this purpose we introduce three groups
of scales connected with the particle collisions (the scales for the velocity v,, the
collision time 7, and the interaction length r,), the particle evolution between
collisions (the scales v, 7, and the mean free path between collision A = (nrg)™?,
where 7 is the number density), the hydrodynamic scales (v,, 7, L). We call these
scales b, A and L scales respectively. The dimensionless values we denote as ", for

example we have )
b=y, tUEI’ Ej = FOFij’ .fs .fspoasV_ (22)

where p, is the impulse scale.
The Bogolubov equation is transformed into

afs - 4 afs . afs af s a f - A A
S+ 3 f,- 25 F. .54 q FZ f = N —8)—- ] de. .., (2.3
of 12 i o7, zil '35 ) Z P, ﬁz§1( )api z,s+1fs+1 s+ (2.3)
where we introduce the parameters

o == Fal F o ﬂ = ’I‘g _1, (24)

where V is the volume of the system. Using the method of many scales (Kogan 1969;
Naife 1976 ; Alexeev 1982) we introduce additional space, impulse and time variables
for the s-particle distribution function f;:

Js = Fobos Py Bis by, Pins Bins b Pi B s ©), (2.5)
where ¢ = nr} is a small parameter. Using the condition s < N we get the next

dimensionless kinetic equation:

afs afs 2 afs ¢ 1—_ si 3 f )
a +2 1 ar+z§1}7ﬁ aﬂ+ ?F aﬂi_ €i§laﬁi E,s+1fs+1dgs+1' (26)

A

Phil. Trans. R. Soc. Lond. A (1994)
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420 B. V. Alexeev

In the considered case we do not need any additional variables for velocity; for
other dimensionless variables we use scale factors

— -1 _ — -1 _ -1
Ty = AVgi, Ty =TV € =105V, €=UV} (2.7)

As a result we have

Foo =TT by =1t[ty, Ty =1,/A=efy, (2.8)
By using analogical transformation
7 i A Ty o T A A A
b= T_)l =€y, Ty = Zb%b = ‘fz’”ib = €63 Ty (2.9)
and at last for hydrodynamical time we find
f=Tof =ToTaf — oo £ (2.10)

7L TATL

where ¢, = A/L = Kn (the Knudsen number); any restrictions for Knudsen numbers
are not considered. Let us expand now f, in a power series in €:

fi=2 f;(fb’ FPip»Bss tA)u Fors Pirs fln FirsPir) € (2.11)
=0
Let us find the derivatives using (2.8)—(2.10)

7 Fo F1 £0 nf F0 g Fo F1 ) Fo
a—J} = % e% %% %%+ =%+e(a{s+eza{s+eleze3%), (2.12)

ot, o, ot, 0ot,ot, 0t ot ot,, at,, ot ot

o, _oft [y oft of

oF,  of, C\of, Tar, T %) (2.13)

Substituting (2.12) and (2.13) in (2.6) and equalizing the coefficients by the equal
power of ¢, we find

afe_oft Lo ot L s At L of
~=F+t X b2+ T Fye 2 tal Fio— =0, (2.14
D, by i Oy e YW o Op )
Dfy  dfs _ 30 f b ad
/54 8J8 — | F, 0 dQ , 2.15
71, dt,\,L z§1 P, 1,s+1fs+1 s+1 ( )
d o ¢ 0 o ¢ 0 S o 0
where =+ X b —+¢€ (6 G—+ X 0, — )+e S F-—
df, , POk i OFy o \TPRE, o OFy) LT OB
s s 8
L, s p, 0 ey p. O ey £ (2.16)

The kinetic equation for the one-particle distribution function can be written
afi, aft_ o
P, di, op,

Introducing the new variable x,, = r;, —r,, and observing that

Jﬁmf”g d#y, dp,. (2.17)

Dfy Y, U, o ) AL Y 2
—= =4+ (0,—0,) ———+ X F,-=—2+aX F,
ot, o, ' OF, (01 =0) 0 1721 OBy

Phil. Trans. R. Soc. Lond. A (1994)
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The generalized Boltzmann equation 421

we therefore get

ofy _ o

L1 apl atb

of p o of ofs
+8,- 5. (#, )axm+F1 5.+ ZF B @19

Let us transform the integral in the right-hand part of (2.15), supposing that the
force of interaction between the first and the second particles does not depend on the
velocity:

. ofo o of0
fFl2 Of) d?,, dp, _—[(vl D)+ a/-fzbd"z » AP,
X195

o3 of af0 5 F afg
J(ab+ 1 o, 2 ap d?, ,dp,+ | Fy - B, d"z » APy (2.20)

The last integral in the right-hand part of (2.20) can be transformed into the surface
integral in the velocity space. Therefore this integral is equal to zero, because the
distribution function tends to zero if the velocity tends to inﬁnity Hence we have

afr _d.f JA L J(afz ofY af0
+ - v,—0 - dz d ot +0,-
th df, |, (01 =2)- Xy Tav ab VOR, o @p

The equation (2.21) must be used for the calculation of f but this equation contains
the term, belonging to the senior equations in the Bogolubov chain of equations, in
the right-hand side (because of f3) f9) and the term, connected with f 1> belonging to
the senior term of the power series (2.11). It is Well known that the two-particle
distribution function f3 ( 9" (which equals f2 o) can be performed in rarefied gas as

) Fop dP,.  (2.21)

fz = 1,1f1,2- (2.22)
Therefore the last integral term in (2.21) can be written, using the condition of
normalization
jfl drdp =1, (2.23)
in the form
3 o, s f° o af 5 s
d#,, dp. F.—= .
j(@b-l_ 1’ o, @ 2° Fop APy = a 1+aF B (2.24)

But these terms equal zero because of (2.14), if we take into account that F;, = 0.
Kinetic equation (2.21) can be simplified as

1f 4 f3 -
21, th . J(”z by) axm , f1 1f1,2) A%y , AP, (2.25)
The integral term in the right-hand side of (2.25) (after integration in r,-scale) leads
to the usual Boltzmann collision term. Nevertheless the left-hand side of (2.25)
contains the derivative mentioned above. I should emphasize that this term,
generally speaking, is of the same order as the second term in the left-hand side of
(2.25). The usual argument for omitting 2, f 1/9f, leads to the affirmation that this
term is apparently small because it takes into account the alteration of the
distribution function in the ¢, scale. But this term must be considered more
thoroughly, because, roughly speaking, it is proportional to ratio of the small value
f 1 to the small value of f,,, which leads to the appearance of the term of the same order

as dlfl/dt/\ L
Phil. Trans. R. Soc. Lond. A (1994)
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422 B. V. Alexeev

Therefore, we must discuss the approximation of this derivative in the £, scale
(Alexeev 1988). In a definite sense we have a problem of the same character, as by
approximation of f3 ( 0 (see 2. 22) it is obvious that

%=%[(%) ] (2.26)
9, D1\ )] '

In the t, scale it is natural to consider dynamical variables f,,7,,¢ as correlated
values. Therefore, it is possible to write

afl) ] [afl (at,,) of, oF, (af,,) af1 b (at,,) ]
= WIS Wl B B S Pl . (227
@tb[(ae Db, | 06, \ €)ooy OF, Of, \ e 0b ot, \ 0e ( )

We introduce the next approximation of the derivative (2.26);

afy _ [ 7 ]
at, ~ D, =0 D, (2.28)

The parameter [0f,/0¢|._, can be discussed, using the terminology of time relaxation.
In fact, let us return to the dimensional form of the kinetic equation. The one-particle
distribution function (corresponding to the first term of expansion in the power series
(2.14)) we denote, as usual, f.

The generalized Boltzmann equation takes the form

2%, 2 [gf] Ja, (2.29)

oe

ot + a9t Dt
where Jy is Boltzmann collision integral and
T=2¢€"/(0e/0t),_y, €"=mnr}. (2.30)

The problem of the choice of sign before 7 we discuss later in this section, but now
we must define the physical sense of the parameter 7. From the physical point of view
the derivative (Je/0t)., corresponds to the number of particles entering in the
interaction volume per unit of time if in the initial time moment there are no particles
in this volume. Obviously, the number of these particles equals the collision number
occurring in the volume rj. Therefore the parameter 7 is the mean time between
collisions. For example, for the model of hard spheres, in the continual limit, 7 can
be connected with dynamical viscosity (Chapman & Cowling 1939) #

™ = 0.786%. (2.31)

The approximation (2.28) is realized on a time interval of collision time order.
Therefore there is no problem of secular terms.

By investigation of the hydrodynamical problem it is useful to transform (2.29) to
the dimensionless form, using the following : hydrodynamical time 7, ; corresponding
length, L ; mean molecular velocity, and also the value of the distribution function,
defined as the ratio of the character number of molecules in unit volume to the mean
thermal velocity cubed.

Then the generalized Boltzmann equation can be written in the following elegant
form (more simple approximation in the hydrodynamic limit):

Do 24 L
ot 2t 9t Kn

L. (2.32)

Phil. Trans. R. Soc. Lond. A (1994)
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The generalized Boltzmann equation 423

As a conclusion, it is possible to state that making allowance for alteration of the
distribution function in the 7% scale, we receive the additional term on the left-hand
side of the Boltzmann equatlon which is of the Knudsen number order. The collision
integral J must be written in the classical form, because it contains only the
dlstrlbutlon function of zero order.

Let us discuss now the problem of the choice of sign before 7. This problem is
connected with the H-theorem of Boltzmann and with the Prigogine principle of the
entropy rate (Nicolis & Prigogine 1977):

dH/dt <0 (Boltzmann principle), (2.33)
d?H/dt* > 0 (Prigogine principle), (2.34)
where H= fflnfdﬁ.

I intend to show that the existence of the Boltzmann and Prigogine principles leads
to a negative sign in equation (2.32). Following the usual procedure we consider a
homogeneous gas without any external forces. Therefore the GBE has the form

of a2f
Stres=Jp (2.35)

After multiplication of both sides of (2.35) by In f and simple transformations we get

0 0? of
é—t(flnf)ifw(flnf)— f( ) (1+Inf)J (2.36)
Integration over velocity v leads to the result
0H A O*H of
E+ e ff( ) dv+J 1+Inf)Jgdo. (2.37)

The last integral on the left-hand side of (2.37) can be transformed with the help of
the principle of microscopical reversibility

f1+lnf Jg dv——— J}jjl (fif —f£.) gb dbdepdo, dv, (2.38)

where ¢ is the relative velocity of two colliding particles, b is the impact parameter
and @ is the azimuthal angle. Therefore we have

OH 62H f f L
— 7= —= - b db de dv, dv. 2.
Now we can state using the Prigogine and Boltzmann principles that the inequalities
0H O*H oH* oH
T S <0, H* v :
TR 0, 5 0, H*=H—-7 o (2.40)

are valid always if we choose minus before parameter 7. Consequently we get the

kinetic equation
G D( 2
@%—@( @J;) Jg. (2.41)

Phil. Trans. R. Soc. Lond. A (1994)
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424 B. V. Alexeev

For the multicomponent system we have obviously

o2 (),

ot i\ Dt

9, _219f, 99, _

Dt Dt Dt Dt Dt B,

2 9 0 0
where T at+”“'$+Fa'a—%’

2 2f, _ %/, e P s, Yoo o O .
Giat o e Ty e Ce et B g TR, Eata
oF, o, ., .0 . .
3t an, o = ar Tt 5 o0, FF+aEw F..
Because of the fundamental significance of this result we now discuss the GBE

(2.41) from another point of view using the ‘physical’ method of derivation of
Boltzmann equation.

or

(b) The physical method of derivation of the e

Now we can go on to derive the GBE from a phenomenological or ‘physical’ point
of view.

The alteration of the number of a-molecules must be connected with encounters
and defined with the help of the Boltzmann collision integral :

fa[r+vadt+%Fa(dt) v,+F, dt+1g§1~(dt) t+dt]J —[r,v,t) =[J, at+J, ]dt.

(2.42)

We intend to take into account the terms, which are of O((dt)?). The calculation of
the jacobian J with this accuracy leads to the result

® 10
) B (dt)z——z—a— - F (d¢t)?, (2.43)
where B is magnetic induction, g, is the charge of a-species, F, is an external force
acting on unit mass of species . Expanding now the left-hand side of equation (2.42)
by Taylor’s theorem and keeping the O(dt)*-terms we find, omitting for simplicity
the terms connected with the external forces,

J=1+Gﬁ

o

o Tl T B

where 7 = dt/2, and the sign : denotes the double tensor product. There is a double
sign before parameter 7 because of the possibility of another approximation of the
distribution function:

dfrt, vt)
f“(r, v, t) m—fa("—Ar, va—Ava, t— dt) = [Ja, el "‘J‘%y ,] dt. (245)

2 2 2
Uy Pa, {afaJraf 00,420k a}=Jw+Ja . (2.44)

Equation (2.44), from the phenomenological point of view, is obviously of the same
form as (2.32), received from the BBGKI-hierarchy of equations. Of course, we must

Phil. Trans. R. Soc. Lond. A (1994)
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The generalized Boltzmann equation 425

take into account the more general character of conditions used by derivation (2.32).
Therefore we must choose a minus sign before 7 in (2.44). Let us write the general
Boltzmann equation once more:

o, o, o, of,  OF, of, O, O, . o, .
ot Tl TE gy {Fa or o o, o Taror % oy, "‘(")rF
o, 0 . . %, . &f, a2f
gt Fatgy Fot g me i ELF b2 Jesin Foag T Foa o
= Ja, e1+Joc 7 (246)
”
where Joa=3 |(fLf;—f. ) Pg,bdbdpdy, (2.47)

is the usual integral form for elastic collisions of molecules of a-component mixtures
and, for example, for bimolecular reactions (Alexeev 1982)

A, +A;=A4,+4,
.= %Zr]/a (&f f5—Fo f5) "PL39.5b5in 6 db A6 d dd vy, (2.48)
in usual nominations. We must only notice that
3
=) o

is the factor connected with statistical weight of components.

3. New hydrodynamical equations
(@) Generalized hydrodynamical equations

The momentum method must be applied for receiving hydrodynamical equations.
As usual in the Enskog theory both sides of the BE must be multiplied by collision
invariants ¢, connected with conservation laws; after following integration of both
sides of this equation over velocity v,, we get the generalized hydrodynamical
Enskog equation (¢HEE) in the form:

sz{af“ Lot af“}dv Tzﬁ/fa{ o dey . giugflf-a—n

2 2
(el e Uy

“"or or?  ord

of
* .FF,
Pabat 5y 00

a

%f, . f, . } _
+25 i Py e Fo 2 dv,=0. (3.1)

The conservation laws of mass, momentum and energy are of course valid in the
chemical reactions and therefore for

Yo=m, Yo=mu, Yi=im v te, (3.2)
(e, is the internal energy of molecule of species &), we can write

zfzpa J, adv, =0, ZJ;&;JMdv =0, i=1,2,3. (3.3)

Phil. Trans. R. Soc. Lond. A (1994)
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426 B. V. Alexeev

The right-hand side of GHEE (3.1) is zero because of (3.2) and (3.3). We need only to
add that the mass conservation law for species & must be discussed separately with

the help of relations
[wa. a0~ R, (3.4

where R, is the mass rate of formation of a-species in chemical reactions (a = 1, ..., u).

Now we derive GHEE in the differential form. The derivation mentioned contains
very complicated mathematical transformations. Therefore I present here only the
principal features of transformations.

(i) Continuity equation for species o and for mixture
First of all we introduce the force F, acting on unit mass as follows

F,= FO 4 FB, (3.5)

where FZ is the Lorentz force, connected with external magnetic field, and F are
forces of another nature. The first part of the mathematical transformations (the first
sum in the left-hand side of (3.1)) is well known (see, for example, Hirschfelder et al.
1969) and leads to the usual form of the Enskog continuity equation.

Let us consider for example one of the integral non-classic terms in the second sum
of the left-hand side of (3.1):

2 2
fma O/ :vaFa=fm /s tv, FBdo —F(U-%

dv,dr VT S/
= Ao 7 ), apa
ma’o"‘ -rot B ma [pa X B]—F¢ - (3.6)

In (3.6) we use the usual notations; p, is the density of species «, 7, is the mean
velocity of a-species molecules,

_ 1 1
v, = ;I;J‘foc vocdvoc’ vy = ;sza v,. (37)
In a similar manner we find

2 2
Jma e :F,F, dy ~—mj o7 FfFfdva

dv_ Ov

q 2
=— da | p2
2p, (ma) B2 (3.8)
As a result we obtain the next equation for a mixture:
o 0 _ | < pa % 0 ray w9 ©
at+a (va)—T{ %Fac ar Z aar F Zm a (pac a B)
%  0? 0?

)
a2 (en)) 69

where tensor P =2 p, V, V,;V, is a peculiar velocity of a-species and the average
value @, of any molecular characteristic can be found by

_ 1
Qo = n_aj afacdvac'

+

Phil. Trans. R. Soc. Lond. A (1994)
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The generalized Boltzmann equation 427

The continuity equation (3.9) has the very interesting form with the additional
fluctuation term (proportional to 7 and therefore to the Knudsen number) on the
right-hand side of this equation. The term on the right-hand side of (3.9) can be
considered as the fluctuation term connected with subgrid or microturbulence. The
hydrodynamical equations in their usual form are valid for character lengths
much more than the mean free path between collisions, and the appearance in
hydrodynamical equations of the term proportional to the Knudsen number cannot
be considered from this point of view as a breach of the conservation laws. On the
other hand the usual form of the Boltzmann equation can be obtained from the
BBGKTI hierarchy only for the particles considered as material points. For a control
volume this kind of particle can be found only inside or outside the volume. This fact
leads to the classical form of the continuity equation. For the particles of finite
dimensions the third possibility exists when for a time moment the particles are
placed on the control surface partly inside and partly outside the surface. As a result
we get the fluctuation term in the continuity equation. Introducing now the
‘average’ values (indicated by ) in the sense of the turbulence theory and neglecting,
in the continual limit, the small terms proportional to the product of 7-order terms
multiplied by the time and space derivatives of the logarithm of hydrodynamic
values, we obtain the divergent form of the continuity equation. Really trans-
formations (3.9) can be written in the divergent form

d p 0 d [ d 5 o
5{p T[atJ’ar (pvo>]}+a, {on T[at(p”°)+ar pYo ot P %paFa
—Z%(anOXB—FjaxB)iI}zor

o o

where j, is the diffusional flux of a-species. Therefore

ot 9 o
b (om) =0, (3.10)
§ 0
pa=p—7[a—‘t’+5-<pvo>], (3.11)

0 d 0 v ,
(po)* = on“’T[a (pvo)+a',0vo vo"‘é;‘P—Z;%‘(pa Vo X B+j, % B)—Zp“F;D] .
(3.12)

Relations (3.11) and (3.12) have very interesting structure. If we can state that
for any flow the fluctuations of hydrodynamic values disappear, then the values in
square brackets in relations (3.11) and (3.12) must be equal to zero. But the square
brackets in (3.11) and (3.12) contain the left-hand side of the continuity and
momentum equations and hence these values become equal to zero. In conclusion
we cite the continuity equation for a-species

0p, O o w0 pay_ 2.0 p,
-5t—+ar (pav0+.la) '—T{ Fac o paar Foz maar (pacvach)-l_ at2

o2 o2 02 A 0(0
. £ 0y f et i —(=j. )t +R,. (3.13
+arar P"‘+2arar v(,Jo‘+a pav0v0+2at(ar ”a"°>+2at(ar Ja)}+ w (3.13)

ror
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428 B. V. Alexeev

(ii) Momentum equation for multicomponent mixture

The momentum equation for the multicomponent mixture can be received from
GHEE (3.1) using as the collision invariant 2 = m_V_ or ¥2 = m,v,. Both forms of
the equation are equivalent and can be transformed from one to another with the
help of linear combination of hydrodynamical equations for mass, momentum and
energy.

As earlier, we point out only transformations of terms we need; for example

Y |myv e, 2o, F,dv, = — ZF(”a (p,0,)—Z|FP-— d (P, 0,)
- aoca a “a a-a - a o2 2

0 4 _ 0\ (4%
|5 L |x B (Bx )5 (L) @

o a

zjmv(F f“) E(F“’ff)(pa a)+2(m) S X (arp). (315)

o

In the last relation we introduce the tensor of the type (0/0r) x 44 (vector product
of 9/0r and dyad AA). Therefore the scalar product of this tensor and vector leads
to the vector whose components can be written in the form

a .
[B'(ar( p«)] ( Jfavwmdv) (i=1,2,3). (3.16)

As a result, we have the following momentum equations:

0 0 0 q
— — — P — o _sde 5 (5
at(va)+ar (P, vo)+ar P %paFoc %m“pa(vaXB)
% .2 OFy 0B )
{2 aBa X (0,0, 0,) — Epa 5 +at><§qa Zpa gy Fa
+§] n 0 va+2q“ v,0, rotB+a2(v) i (P+pvyv) v,
qa o aca “m“poc atzpo aa pO 0

T AL AT LRt P A Ay 4

+ 2o (L) (BB-0)- 0| -2 3 F0 L (p.00-5(F0 - D .

o

[ 2;;0“ ]xB 2(B><a)2q“pa v,— 2 q,m, (F¥ x B)

o

0 0 0% 02
QZF(I) é)ta 2[a2&,0a a]xB+2© 5 pvovo—{—Qa % P} (3.17)

(iii) Energy equation for a multicomponent mixture with chemical reactions

As in the previous case the energy equation will be written for the collision
invariant, which is connected with the particle velocity:

3 — 2
wa - %ma vac+ €y
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The generalized Boltzmann equation 429

The use of t» __llision invariant ym, V2+¢, leads to the linear dependent equation.
In common cases the generalized energy equation has a rather large form.
Nevertheless, we write this equation for the case when the external magnetic field is

absent (B =0):

at(zp )+§—a?+ 2 28 - (v, pv3) + = °(vO'P)+§5'(00p)
+_/€)_(v >n € )+.a_.q._v Zp F(l)_ZF(x)_j
aroaaaar Oaaaa““
E)F(D .
=T{ 2 ot Po Uy 2[%pav(zj’{'.’a.v0+%pa+eana]%.F(l) Epavava -agF(l)

2 2 2
2

az 1,213 a . 1,2 1 a . a
+@[§pvo+§p+§€ana]+5;5;°(vo v0§p00)+§arar ’U P+ a a [(vO P) vO]

¢ DURATNA Ll & =p. V.7, V2+— 3 8 ooy v+ 2
Faror Xt ValPa 2aror dror PPV 25,5 0
¢ .5 t+PI+ Zp, P12 S F- 0 + 00 Ju 1, 0o+ P
arar “m“[Pavo 0 P . a ar (Pa”ovo vOJa JavO a)
—z( FO-2lean o, b0yt -2 S FO- S o, 09 -2 8 F0- L
02 02 02
a ot [vO( va+§p+Z€ana)]+2a ot ( P)+26;—(r3—t°q}’ (318)

where g is the energy-flux vector and p,, p are the partial and total pressure
respectively. The partial forms and particular cases of these generalized hydro-
dynamical equations will be discussed in the following sections.

(b) Method of the aBr solution
Let us consider the generalized Boltzmann equation

%, 29, ! )
ot Taioe - 2 Ualiflegbdbdpds, (3.19)

written for the multicomponent mixture of non-reacting gases. For simplicity we
introduce the condition that all external forces are absent (F, = 0). Using the main
ideas of the classical Chapman—Enskog method we construct the solution of (3.19)
expanding the dimensionless distribution function in power series in the Knudsen
number. In dimensional form we have

fo =P +fD, (3.20)
where (¥ as usual is the maxwellian function. For the first approximation we have
@f‘(xo) a 9 (0) 9 @f‘g‘o)

ot Ta g T gt

Y3
=2 LTV LT =PI =L f 219,40 dbdpdy;,  (3.21)

Jj=1
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20 _YO YO
where ot = ot +uv, ar (3.22)

We search for the solution of (3.21) in the form

0, a a
fgcl) =fgc ) ¢a_T~a—t(fgLO) ¢a)_Tva.-a;(f§tO) ¢a)‘ (323)

In (3.23), ¢, is the solution, received by Chapman and Enskog for the equation

(0)

Eff(O)f(O) ¢a+¢j_¢a_¢j)gafbdbd¢dvj' (324)

Using (3.23) and the linearity of (3.21) we reduce this equation to the system of
equations:

f O Eff<o)f0) (Poti—du—b;)g.;bdbdepdo;, (3.25)

o GO
o é? =a;2.ffé°’f§~°’ (¢s+ 07— B~ $5) 4oy b db dpdoy, (3.26)

3 (oY
( ét) a,{ Effi“’f‘°)(¢;+¢;—¢a—¢j)gajbdbd<pdvj], (3.27)

(0)
e A A AR TR L A DA E Y
Equation (3.25) coincides with (3.24); the solution of this equation is well known
(Chapman & Cowling 1939). I should emphasize that the substantial derivative
2f© /2t must be calculated with 7 =0. Obviously there are no contradictory
equations among (3.25)—(3.27). As to (3.28), note that the use of the momentum
method of the (3.28) solution leads to the identical zero in both sides of the equations.
Therefore the solution of (3.21) can be realized with the help of the traditional
Chapman—Enskog method. I intend to keep in the right-hand sides of generalized
hydrodynamical equations only the terms which are proportional to 7. The pressure
tensor, P, the diffusional flux, j, of species, «, and energy flux, ¢, in the right-hand
sides of the GHE must be calculated in the zero 7-approximation, using as correction
for £ only the function f ¢,. Any values obtained this way will be marked as P".
I begin with the continuity equation

op 0 _ [, @ 0? 0?
at+ar (pvo)——T[W-FW'PA_'_a P pv°v°+26ta (pvo)]. (3.29)

The momentum equation can be written as

0 0 0 0 0? 0?
6;(on)+”0(5;'on)+(on'5)vo"'a'P"T[EF(P%) ara H(P" +pv, 1) v,

0? 02 iy 02 02
aa Zpa(V v) V., + o Zpa(V V)V+2 o p"°"°+2ata P]

(3.30)
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The generalized Boltzmann equation 431

For the pressure tensor P one obtains

P z{mafVa V.o dva+mafVa V.19 4.do,
o j Voo (f9 g do, +m, f A vaf;°>¢a>dva}=zPa, (3.31)
P=pl-2yS—r{-25Sn=2 (o) s] + 20,2 08)
_p 77 at ,'7 ar 0 ,'7 Oar 77

—2 (s%) v,—T+D +”0H}, (3.32)

where we introduce the tensors: /, the unit tensor; 7, which has the components

(r=2,T,
0 oT\ K © or 30 oT
T (b a0 E () 39

ory, 410

where 7' is the temperature of mixture and k, = (k/m,) DT +2X/. DT is the thermal
diffusion coefficient; k is the Boltzmann constant and A, is thermal conductivity;

, 2T
A, = —%knaA/ m Ay

a,, is the coefficient in the Sonine expansion.
D is the tensor for which D =2 D, . The tensor D has components

0 3 0
Dy = lal+ ak+8kl 2l (3.34)
' = 01y *
_b 1
where li = ;anﬂ(Daﬂ—Daﬁ).
A

Relation (3.34) contains usual diffusion coefficient D,

pr,  |2kT
2nm N M,

D= o, (3.35)

and the ‘first’ diffusional coefficient

y _ pm,  |2kT

= (ﬂ a)
op 2nmgal m, (3.36)

cba ¢ are coefficients in the Sonine expansion.
Tensor »H = X _*H, has components.

w30 o ), 2
Hkl,a_ 2@’516 {UOk”al: (an‘{- l 381lar v0 . (337)

S is the usual stress tensor. The cross-disposition of brackets in (3.32) underlines the
order of calculations.

Phil. Trans. R. Soc. Lond. A (1994)


http://rsta.royalsocietypublishing.org/

e

P

\\ \\

{

A

,/\\
AN

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

'am \

A
y 9

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

432 B. V. Alexeev

The right-hand side of (3.30) contains two averaged terms, which can be calculated
owing to f, = f"(1+6.,):

Vi) V=250t S+a[a-(v>] (3.38)
arar ap“ 0 a or o’ orlor Py | .
o e 02 (0T Lo
ror Zpa(V VoV,= 25;6;(]667>_A(k67)
02 n "
R [p z My(Dop— Diﬂ>d] [%azﬂmﬁwaﬁ—mﬂ) dﬁ], (3.39)
.
where d;= 0 (——'Q)+(——£ _é)ﬁlnp and k=Y k,
ar " p ar a=1

Note (see (3.31)—(3.37)) that in the common case the tensor P contains the terms
connected with processes of diffusion, thermodiffusion and thermal conductivity.

We can now proceed to derive the conservation energy in the generalized
Navier—Stokes approximation. Using the collision invariant 12 = im_ V2 it is possible
to write the energy equation in the form:

~

0 ~ 0 0
5 PO 5, (o, U) + g+ P,

Dl

(Voc Va) (Va‘ UO)

N P W\ 1 0 , .., O
_7{675—2('0(])+ (815) +§arar 0P +arar

1 o o VoV ot s o (T o T°
tamrar or (VYA Var 2 Sp. (Vo) Voot g SoVoeg Vi
;aa?‘)r (v, vp) v2+ g—%:p(vovo)—vo'a;?%;i(PA“"P"ovo)”0
0 e TV e ue O
20,5 i Vo) Vo=t s 2oV V) Vot wiig 5 i P
a? o
+i0h 5,55 P00 o+ 25 =0 [+ 00 P+ 3pvg+ v} v,]
o o
—2p [a el +pvovo)]+voa 5 (P%}: (3.40)

with pV = nkT.
To use (3.40) we need calculate the heat flux

a =g =[S, [VRG 008 aVrm, [V 2 s 080 an]. 4y
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The generalized Boltzmann equation 433

The calculations lead to the result:

A a a a
q=9q —T{aqt 277(”0 [(") )(vo ]S)—-217(vo-3)-é700
a 22. E Poy 1
tay 1SV~ (18)+7~ [S Ep—(m—v)]

o o

o T T o  oTd n
k[é;vo-5;+a;-avo+—a75;-vo]+p[ =~V Em,,(Daﬂ Daﬂ)dﬂ

- 0
+§ mﬁ(Da/?_Diﬁ) dﬁ“a700+§mﬂ(Daﬁ—D;ﬂ) dﬂé;'vo]

5p o 0 57 (97 D
+2p5;mﬂ(Daﬁ Daﬂ)(dﬂ a)vo k FPA A (3.42)

From (3.42) we can conclude that the heat flux ¢ depends on viscosity and diffusion
in the mixture of gases. We must write down several other integrals for the average
values on the right-hand side of (3.42):

o I e L [ D
a ar %p“(V V)(Va°7)0)-——26—;5.]6005’:—A(k00'—a77‘)

02 pn PR

1o 57 Py \_56 0° o= a
sarar 2Pl Ve VoV Ve =3k (Tzﬁ) 9 oror [SkTE

o o oc

140 & | Nu—17%
—_farar'[ﬂkT§_ma_]’ (3.44)

where the tensor [ has the components

Hy; = 65004 /0r;, 4,§=1,2,3 (3.45)
and A is laplacian. At last,
0? ey I 0? s
arar’§pa( Vac v()) Va'vo - W-on vo"zm'”(vo Vy* )’ (346)
0? e 0? vaT 0? P
arar'§”“( V,v)) V2= ~5arar b— 3 +5a 5 Zmﬂ(Daﬂ =Dy dsv,.  (3.47)

Several concrete examples based on these generalized hydrodynamical equations will
be considered in the following sections.

(c) Strict turbulence theory

During many years’ intensive research activity in the field of turbulent flows,
applications associated with jet and rocket propulsion, material processing industries
and so on have been developed. The state of the research, classification of various
models and their applications and limitations (see, for example, Kuo 1986) will not
be discussed. I restrict discussion of modern turbulence theory to several remarks
that are of principal importance to the following theory.

L. The turbulent motion is random and irregular; therefore there is a broad range
of length scales.
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434 B. V. Alexeev

2. Turbulent flows are always dissipative, and the smallest scale (Kolmogorov
scale) in turbulence is connected with molecular viscosity.

3. Turbulence originates as an instability of laminar flows at high Reynolds
numbers.

4. Turbulence is governed by the same equations (in the definite sense) of fluid
mechanics as laminar flow.

The last affirmation must be discussed in detail. The first step of a turbulence
model construction consists in averaging Navier—Stokes equations with the help
of a time-averaging procedure (Reynolds averaging) or mass-weighted averaging
(Favre averaging). Other methods for the fluid mechanical description of the problem
have their shortcomings; for example, application of the moment methods is
connected inevitably with the unclosed system of moments. The origin of all
limitations of known turbulence models is their phenomenological character. There
are two implicit suggestions in the classical turbulence theory: (i) Navier—Stokes
equations are adequate for turbulence description; (ii) fluctuation terms are
proportional to any previously unknown turbulent viscosity. As a result the
governing equations take unclosed form, because there are more unknowns than
equations. On the other hand, at least on the Kolmogorov scale the base equations
of fluid mechanics must contain fluctuation terms in explicit form, because this
smallest scale in a turbulent flow is a dissipative microscale, connected with usual
viscosity. In this sense Navier—Stokes equations do not contain turbulence, and
effects of turbulence must be introduced in the classical theory in a phenomenological
way, like the Reynolds procedure. But Navier—Stokes equations are the direct
consequence of the Boltzmann equation. Therefore the new theory of turbulence
must be based on the other kinetic equations. From this point of view the generalized
hydrodynamic equations have a very interesting structure. The additional terms in
the GHE are proportional to viscosity and correspond to fluctuation terms on the
Kolmogorov scale Iy = (¥3/¢,)i, where v is the kinematic viscosity and e, is the rate of
energy dissipation per unit fluid mass. Therefore these equations should be discussed
from turbulence positions. But for this purpose we must answer two main questions.
(1) Is it possible to organize the explicit form, on the level of the generalized Enskog
hydrodynamic equations, of the Reynolds procedure of extracting from the ‘real’
hydrodynamic values the fluctuation terms? (2) Is it possible to prove the absence
of contradictions in the obtained fluctuations ? The answers are both yes. First of all
the GHE must be rewritten in the divergent form, as it was done with the continuity
equation (3.10). For example, the momentum equation (assuming that the magnetic
field is absent) can be transformed as

0 0 0
— — 7= +—-(P+ -3 (1)
at{pvo T[at (pvo) or ( pPY, l)o) - paFa ]}

LR PLAE T |

0 0 -
+5;'{P+Pv0vo—T[éaz(P+onvo)+6;'[on+(onvo)vo+ZPa(Vavo) V.,

S VI VA SV VI V=SR2 g0~ Sp. PO || =0, (3.48)
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The energy equation in the divergence form is
a a 1.2 3
pr 2P”o+ﬂ’+2 — 7|5 @Pvtap + Xe )

§)
+a—,~[v0-<P+I<%pvz+%p+zeana>>+q1—2F;1>-pava]}

) \
P9

é \
/A \
AN

ad a a

—_ +5’{”0(%Pvg+%p)+vo'P+voze N, +q— T[a (vo(zpvo'l'ﬂ’"'z n,)

NFe

2: +v,-P+q)+ P [vovozpvo“"z(vo P)”o"'“”op"'z(vo Vap. V.V,
e

= O

T O +E V,V, VE+3pv,v,+20 +Z P

~ Pa 2T 2PV Uy oqd (pavaO+ )

*E F(Stl) (%pavg-i_ja'vo+%pa+€ana)—-2F§z])'(pavo vO+vOja+ja'vO+Pd)]}

a

0 0
_{EFLD°pal_)a_T[ZFle)'('a—t(pava)_paFil)-'_é;'(pava0+vOja+jav0+Pa))} =0.

PHILOSOPHICAL
TRANSACTIONS
OF

(3.49)

In the common case the ¢HE have the very complex structure. But in many
particular cases very good results can be achieved by using only the generalized
Euler equations obtained with the help of the local maxwellian function. The origin
of this fact is quite obvious; the generalized Navier—Stokes equations contain the
fluctuation terms proportional to 7% and therefore the generalized Euler equations
become a good approximation. The order of the GHE is higher than in classical
hydrodynamics. But generally speaking GHE belong to the Cauchy—Kowalewskaya
type of equations; this fact leads to the existence and uniqueness of its solution. The
problem of additional boundary conditions can be solved if we consider the
common symbolic dimensionless form of the GHE:

= &, +Knd,; =0, (3.50)
§ > where subscript ¢ corresponds to the number of the equation in the system of the GHE.
olm In the surface vicinity where Kn — 0o, we obtain from (3.50) the additional boundary
e E conditions

= O Dy, =0. (3.51)
T O , : o

~ Let us take down the system of the GHE in the generalized Euler approximation and

consider, using this simpler example, the question of self-consistency of fluctuation
terms in the gravitational field. We have the continuity equation

of 0 3N SO C O SO R I
a{ﬂ T[a"'ar (P%)]}"'a'j {on T[at(on)"'ar (onvo)+ar pg]}—O, (3.52)
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Table 1. Fluctuations [A] of kydrodynamic values [A] on the Kolmogorov turbulence scale
hydrodynamic
value, [4] fluctuations, (4]
P o 0
T —a?‘f‘a (P”o))

P, T

0 op
(pv,) +é‘;' (pvyvy) +’a7'“ng|

Ll

0
POupt PUosVop T (PBopt PV Vog) + o (P00 8g, +DPV0p 8y F DVoy Bus+ PV06 VopV0y) — G5 PV00— G onp]
y

|

3p+pvi T

[«3)
=

or

— o
Rle

d
(Bp+ pvj) + = (v,(pv5 +5p)) —2g-pvo]

——
Qle

3 2
vo(pvi+5p) T (vo(PU§+5p))+a'(PUg vy +Ipvy + Tpo, ”o+5lp‘;)—2pvo 0N 4

df._p d d
——5pl-g~pv§l-g—p[5(5;+v§>+2(vo'5) vo—gv(,(é;-vo)]}

the momentum equation in the coordinate form («, £, y = 1,2,3)

) ) 0
% {pvw -7 [5; (Pvop) + o (POapt PV0s) —pgﬁ]}

9 0 0 0
_{p_T[—a§+67*— (P%a)]} gﬁ""é}:{pamﬂ_*—mo‘acvoﬂ—’,' [& (Pdapt PV02V0p)

o2

0
+ 5;_ (p%ﬂ aa'y +p/00a 8/?7 +7ww 8&# + PV, Vog UO'y) Yy P'Uoﬂ TPV, gﬁ:l} =0, (353)
Y

the energy equation

a 2 a 2 a 2
5;{31) +pv5 7[5 (3p+pvp) + > (vy(pvg+ 5p)) —2g - pv,

0 0 0 2
+a- {vo(pvﬁ—i- 5p) —T[é; (vy(pv2 +5p)) +6;- [Ipvﬁ—i—pv%, Vo Uy + TPU, v, + 51%]

) p 0
—2pv, vo-g—5pl~g—pv%l-g]}~2g-{pvo—T{ég(pvo)+§+5'(pvo vo)~pg]} =0.
(3.54)

Therefore we have for the case considered the following system of fluctuations (for
hard spheres 7 = 0.7869p™!) indicated in table 1.

Obviously, there are no contradictions in the system of fluctuations in table 1. We
can prove for example

3 (P3us+ Pv0aop)! = (3p-+p0). (3.55)
A

!

Such procedures can be realized in the common case for the generalized
hydrodynamic Enskog equations. Table 1 could be extended to include other
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The generalized Boltzmann equation 437

fluctuations. For example, the product of ‘real’ density and ‘real’ velocity pv, can
be transformed to get the fluctuation value v}. Really, py, = (p*+ p) (v8+v}) and
omitting the small squared fluctuation terms we have

1

vy = ;[(on)‘—P‘vo] (3.56)

) 0 10p

f— |20 . —— Bt S
or vy = T[ o +(v0 ar) v°+p o g]. (3.57)
dp 0 0

f ] —_— — 2 -

By analogy, T[at +ar (pvo)+§par vo]. (3.58)

Let us take down the generalized Euler equations using the terminology of
‘averaged’ values:

@0
Qp—+——- (pvy)* =0, (3.59)

a a a & al — 2
5 (Pou) 5 [+ (poy )] = pg. (3.60)

d )
5 3P + pvp)* +a [v5(pv5 +5p)* — 28 - (pv,)*

_ 0 Q D, o, 0 4 0
= {Tp[ar(5p+vo)+2(vo ar) Vo —350, (ar vo)]}. (3.61)

We must remember, that 7p is proportional to the viscosity #. The system
(3.59)—(3.61) has a very interesting structure. If the dissipative term in the right-hand
side of the energy equation (3.61) is small (this term is connected only with ‘real’
hydrodynamical values) and could be omitted, (3.59)—(3.61) are the usual Euler
equations written for mean hydrodynamical values. Then we can state that the terms

in the energy equation
0 50 (p
U

provoke the turbulence in the physical system considered.

4. Application of the generalized hydrodynamical equations
(@) Propagation of forced sound waves in rarefied gas dynamics

The problem of forced sound waves propagation is the classical subject of
investigation in rarefied gas dynamics. Let us consider a flat plate with infinite
dimensions oscillating with a frequency w in an infinite volume of gas. These
oscillations generate sound waves propagating in the normal (to the surface of the
plate) direction. We introduce the parameter @ = w7, where 7 is the free mean time
between collisions. For the hard sphere model in rarefied gas the relation pr = Iy is
valid (IT = 0.786). The parameter a can be connected analogously with the Reynolds
number r = IT/a. For large r the classical gas dynamics lead to quite satisfactory
results. In linear acoustics where r tends to infinity the damping of sounds tends to
zero and the sound speed can be received as c; = yp,/p,, where p, is the density of
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438 B. V. Alexeev

unperturbed gas, y = ¢p/c,, is the ratio of constant pressure specified heat to volume
constant specific heat. For r ~ 1, moreover for r—0, the situation becomes very
complicated. Euler equations do not observe the changed situation and these
equations lead to constant sound speed and zero damping for all the diapason of r.
Navier—Stokes equations also lead to unsatisfactory result: after achieving a
maximum by r ~ 1 the damping of sound tends to zero and sound speed tends to
infinity when r— 0. Therefore for small r the investigation is building on the kinetic
level of the description. Concerning the methods of physical kinetics, particularly
moment methods (see, for example, Cercignani 1988) we should take note of the
whole unsatisfactory picture. For example, using moment methods leads to a change
for the worse if the number of moments increases. The numerical results known were
obtained with the help of hundreds of moments (Cercignani 1988).

Let us consider now the possibilities of the generalized hydrodynamical equations
in calculating the speed of sound and the damping of sound for arbitrary r-numbers.
In ‘linear’ acoustics the perturbation of density and temperature can be written in
the form:

p=py(1+s,), s,~ exp (iwt—kzx), (4.1)
T=T,1+s;), Sy~ exp(ivt—kz), (4.2)
where k, generally speaking, is a complex number. Linearizing the ¢HE and using
the relations (4.1) and (4.2) we find the following dispersion algebraic equations

originating from the continuity, momentum and energy equations in the generalized
Navier—Stokes approximation:

{1008AB—180A}5Hi2a7121°+{—1;)72ﬁa7AB+1ﬁ56a7A +67;3a73~%29a7
—%MA —%a53+%a% +§17~7§a5B+?72—0a5—%a5
+i1i“726-[— 10084B + 2224 +672B—270]} K4128+{—%§a7A +%a7B+%ga7
+7—1§26a5/1 —%a%—gga%—§17—2a5—16i1;a5—1172—0a3+%a3+ 15a3—£176a3B
+i[—%a% +%Qa6B+§I%a6+%a4A —llgga“B—%)a“A
+1§p§a4—%%;a4:|} /<3126+{—i11%a7——%5—1§a5A +1ln6a5B+%§729a5—%a5
+l3%;a3A~1ilfa3B+%§1;a3—7—HO2a3— 15a3—§11—57a—5a
+i[—11§729a6—%a4‘4 +2—1512a4B+11§29a4—%a4+%93a2—%—a2A— 15a2]} K2
+{——2—1§a5+2‘%a3—a3~22737a+6a+i[—1291%&4+12%a2—2a2+5]}Kléz
+{—3a%+9a+i[—9a%+3]} = 0, (4.3)
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’
Figure 1. Forced sound-wave speeds: 1, generalized Euler equation; 2, generalized Navier-Stokes
equation; 3, Navier-Stokes equation; o, @, comparison with experiments (Greenspan 1956 ; Meyer
& Sessler 1957 respectively).

where k =y, 4 =1—9'/y, B=1-2Y/(2X’); 9*,AY are additional coefficients of
viscosity and heat conduction, which (as distinct from the usual viscosity » and heat
conduction A") must be calculated using the first and second coefficients respectively
in the Sonine expansion. For example, with 4 = 0.5pb,, the next relation is valid for
the dimensionless wave number

ke,

k= —t=atif (4.4)

The dispersional equation (4.3) has two obvious asymptotics:
(@) r—> o0, (@a—0),5k*+3 =0 (4.5)
() r—>0, (@a—> ), (33648 — 604 ) K3k

+(—3364B+ 524 +224B —70) k%k* + [ — 1284 + 112B + 28] kk2—20=0. (4.6)

For the hard spheres model: 4 = 0.9415; B = 0.956. The results of calculations for
case (b) are « = 0.426; £ = 0.567. The dispersion equation for the generalized Euler
model can be expressed as an algebraic equation of the sixth degree:

3k%a*k® — ka(1 + 3a? + 3ai) £* + [1a(6 — a?) +i(1 — 2a?)] 122+£—<[3a——a3+i(1 —3a2)] =0

(4.7)

In the limit case of low frequencies (& — 0, continuum range) (4.7) has the ‘physical’
root k =1, therefore a =0, ¢ = ¢o- In the limit case of high frequencies, a - co.
Equation (4.7) has the solution k£ = 0.509 +10.650.

Figure 1 contains the results for the dimensionless speed of sound g = ¢/c, for five
theoretical models in the case of hard spheres and experimental values (Greenspan
1956 ; Meyer & Sessler 1957). In figure 2 the corresponding values for the damping of
sound o are plotted (the results of the hydrodynamical models, existing experimental
data and the results of moment methods).

Several remarks and conclusions follow.

1. In addition to employing monoatomic argon, Meyer & Sessler also used more
complicated gases (H,, air). But in the Knudsen region strong agreement exists
between all experimental results because at relatively high frequencies the internal
degrees of freedom do not have an opportunity to be excited. The results, received
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Figure 2. Forced sound-wave attenuation rates: 1, generalized Euler equation; 2, generalized
Navier—Stokes equation; 3, Navier—Stokes equation; 4, Burnett equation; 5, Super-Burnett
equation, 6, 105 moment equation.

with the help of the cuE, extend well past existing experimental values; the
generalized Navier—Stokes curve is in better agreement with experimental data than
generalized Euler curve.

2. It is a significant fact that using formal more accurate kinetic models (the
results obtained by 105 and 483 moment truncation) leads to worse results. And
also using formal more accurate hydrodynamical models (Navier—Stokes, Burnett,
Super-Burnett) leads to worse results. Therefore, the ‘better’ the model the worse
the result. However all these models are based on the classical Boltzmann equation.
Therefore only the generalized Boltzmann equation can lead to correction of results
for the intermediate Knudsen number region.

3. The question arises as to why GHE are so effective in the intermediate Knudsen
number region, where it seems GHE would fail. It is connected with the ‘interpolative’
structure of these equations. Let us consider the GBE:

LU _gn22_ L

A A= 4.8
9t il Kn (.8)
If Kn tends to infinity (4.8) leads to the result
@A?i =0 (4.9)
Dt Dt

and therefore the equation @f/ Pt = 0 is the usual limit case well known in rarefied
gas dynamics. From this point of view the second term on the left-hand side of (4.9)
is realizing ‘interpolation’ between the continual limit and the free molecular régime
limit. Of course the theory of GBE and GHE carries out the first steps in applications
only, and the range of possibilities of the above theory will clear up only in the future.
And now we consider the last example: the structure of shock wave in monoatomic
gas.
(b) Shock wave structure

The problem of shock wave structure has been tackled theoretically by many
authors both in terms of the Navier—Stokes equations as well as by kinetic theory
approaches. I have not observed very many results obtained in calculations of the
shock wave structure (see, for example, Alexeev & Ustjugov 1988; Alexeev & Polev
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08
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x
Figure 3. Dimensionless density g variation in shock wave. M = 4; @, experimental results

(Schmidt 1969).

0.4 1
F)

1 4 7
M
Figure 4. Dimensionless thickness & variation: 1, Navier-Stokes equation; 2, generalized Euler
equation; 3, generalized Navier—Stokes equation; e, experimental results (Schmidt 1969).

1991). I must emphasize, though, that the application of the Navier—Stokes
equations for investigation of shock wave structure in monoatomic gas leads to
unacceptable results if the Mach number exceeds 1.6.

Let us consider the structure of a plane stationary shock wave in monoatomic gas
with the help of the GHE. According to the physical concept formulated above, ¢HE,
for example in the generalized Euler approximation, can be written in the form

d d? 2
dz (P%)‘T——dxg (p+pvg) =0, (4.10)
d 9 d? 5
3P+ =T 5 (Bugp+prf) =0, (4.11)
d 2 dz 4 2 pz) -
a—;[vo(pvo-i 5p)] 7&;5(pvo+8pvo+5 o)~ 0. (4.12)

The system (4.10)—(4.12) can be easily integrated using the iterative procedure. As
usual the boundary conditions for (4.10)—(4.12) are Rankine—Hugoniot relations.
Figures 3 and 4 show a sample calculation for argon and the comparison of calculated
values with experimental data (Schmidt 1969). Figure 3 contains the dimensionless
density variation (o = (p—p,)/(ps—p1), Where p;, p, are the densities in upstream and
downstream gas) for M = 4 with respect to dimensionless length
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_x _ 16 5\
o xy “T% (6‘“)/71 o1

where ¢, is the sound speed in the upstream region. Experimental values are shown
as dots. Figure 4 shows the dimensionless thickness ¢ of shock wave for different
Mach numbers,

s _ 1 __ PP

"0 T )

max

In figure 4 the curves 1, 2, 3 correspond to Navier—Stokes, generalized Euler and
generalized Navier—Stokes solutions respectively. All calculations received in the
frame of ¢HE are in good agreement with experimental data.

5. Concluding remarks

1. The generalized Boltzmann equation takes into account the alteration of the
distribution function on scales of collision time. The fact of great importance is that
additional terms are proportional to the Knudsen number and therefore, in the
hydrodynamical limit, these terms are proportional to viscosity. '

2. The generalized Boltzmann equation can be considered an analogy of the
Fokker-Plank equation defining the diffusion in the phase-space. The generalized
Boltzmann equation inevitably leads to the new hydrodynamical theory and the
classical Navier-Stokes and Euler equations are only a particular case of this theory.

3. The generalized hydrodynamical equations can be considered as the base of
the strict theory of turbulence on the Kolmogorov scale of turbulence. Additional
boundary conditions for these equations coincide with the well known conditions in
the turbulence theory connected with the disappearance of fluctuations on the wall.
The generalized hydrodynamical equations have, by force of their structure, the very
effective ‘interpolative’ properties for the solution of problems in the intermediate
Knudsen number region.

I acknowledge the University of Provence and the UFR M.I.M. I.U.S.T.I. URA-CNRS 1168. I
thank Professor R. Brun and Dr A. Chikhaoui for their kindness and helpful discussions.
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